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Abstract

The convergence of the iterative ADI-FDTD method proposed by Wang et al. [S. Wang, F. Teixeira, J. Chen, An iter-
ative ADI-FDTD with reduced splitting error, IEEE Microwave Wireless Comp. Lett. 15 (2005) 1531–1533] towards the
classical implicit Crank–Nicolson scheme when applied to Maxwell curl equations, and the accuracy, stability, and disper-
sion properties of the resulting iterated schemes are investigated. The iterated schemes are shown both mathematically and
numerically to be unconditionally stable for 2D wave problems, in agreement with numerical experiments conducted in [S.
Wang, F. Teixeira, J. Chen, An iterative ADI-FDTD with reduced splitting error, IEEE Microwave Wireless Comp. Lett.
15 (2005) 1531–1533]. However these schemes lose their unconditional stability when applied to full 3D wave problems
where TE and TM modes do not decouple, as illustrated by numerical experiments in a PEC box.
� 2006 Published by Elsevier Inc.
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1. Introduction

The alternating-direct ion-implicit (ADI) finite-difference-time-domain method [26,12] is a popular scheme
for solving the three-dimensional Maxwell curl equations. The ADI scheme is a compromise between standard
explicit schemes such as the popular Yee scheme [21], which is efficient but unstable for larger time steps (due
to CFL restrictions), and fully implicit schemes such as Crank–Nicolson (CN), which is unconditionally stable
but inefficient (a 3D system must be solved at each time-step). On the other hand, the ADI scheme combines
efficiency (requiring the solution of one-dimensional systems only at each time-step), with unconditional sta-
bility, and has been successfully applied to a variety of wave propagation and scattering problems, in partic-
ular in low frequency bioelectromagnetics.

Both CN and ADI schemes are second-order accurate (in the classical, non-stiff, sense) in time and in space.
However, the ADI scheme lacks isotropy in dispersion properties and has been observed to have inferior
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accuracy, compared to the CN scheme, in regions with large field gradients, e.g. around singularities associ-
ated with corners or near-field sources [8].

A variety of modifications of the ADI scheme designed to circumvent these problems have recently
emerged.

� Richardson extrapolation and deferred correction ideas were considered in [10,6] to improve the accuracy
in the ADI solution. The extrapolation method combines two second-order ADI solutions obtained with
different step sizes into a single fourth-order approximation, while the deferred correction method uses
an estimate of the local truncation error of the ADI scheme, obtained from a standard ADI solution, as
an explicit source term in a second ADI run. These ideas can be iterated to provide additional accuracy,
although successive extrapolations/corrections may have an undesirable effect on stability [10].
� Efforts to correct the ADI solution ‘‘on the fly’’, i.e., at the time-step level, include ideas based on extrap-

olation [1], symmetrization [20], and iterative correction [19]. Numerical results provided in the references
seem to indicate that these strategies may be beneficial in improving the accuracy. However none of them
considers the effect of modifications on stability, and numerical experiments only address two-dimensional
TE or TM wave applications.

In this study we examine, both analytically and numerically, the iterative correction approach introduced in
[19]. This approach defines a sequence of iterated ADI schemes using a fixed point (FP) iteration on the CN
equations preconditioned with ADI. The resulting iterated schemes were tested in [19] on a two-dimensional
TE wave only (an unspecified extrapolated version was mentioned). Further experiments on TE wave prob-
lems with a variable number of fixed-point iterations according to local spatial requirements were conducted
in [18]. In particular, we investigate: (a) the convergence of the fixed-point iteration towards the CN scheme;
and (b) the accuracy, stability and dispersion properties of the iterated schemes obtained for a fixed number of
fixed-point iterations.

In Section 2 we set up the Maxwell curl system in Fourier space used in the subsequent accuracy and sta-
bility analysis. Known accuracy, stability and dispersion properties of the CN, ADI, and the Yee schemes [21]
are summarized in Section 3. The iterated schemes are analyzed in Section 4. We show that the sequence of
iterated schemes does converge to the CN scheme, that each scheme resulting from a fixed number of fixed-
point iterations is unconditionally stable when applied to two-dimensional TE or TM wave problems (as in the
numerical experiments conducted in [18,19]), but are unstable when applied to full three-dimensional wave
problems with coupled TE and TM modes, even at low CFL numbers. Our conclusions are supported by a
complete Fourier analysis of the 2D case, as well as numerical experiments in a three dimensional PEC
box, reported in Section 5.
2. Maxwell system in Fourier space

We consider the (scaled) 3D Maxwell system
otu ¼AuþBu ð1Þ
in free space, where u = [E,H]T and
ð2Þ
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For a plane wave
uðt; x; y; zÞ ! ûðtÞe�jðkxxþky yþkzzÞ ðj2 ¼ �1Þ
with wave numbers (kx,ky,kz), the system (1) becomes
dû
dt
¼ Aûþ Bû; ð3Þ
where A and B are 6 · 6 matrices obtained by replacing the spatial derivatives oa in A and B by
oa ! �jka ða ¼ x; y; zÞ; ð4Þ
where (û represents the spatial Fourier transform of u). Upon spatial discretization of (1) one only gets an
approximation of jka. For example, second-order central difference FDTD approximations based on staggered
grids for E and H, as in the Yee scheme [21], leads to the substitution
oa ! �j~ka; ~ka ¼ kaf
kaDa

2

� �
ða ¼ x; y; zÞ ð5Þ
with
f ð/Þ ¼ sin /
/

ð6Þ
on a uniform grid with spacing Da in the a-direction. Since jf(/)j 6 1, we have
j~kaj 6 jkaj; ð7Þ
i.e., one effect of spatial discretization is to lower the exact wave number (leading to aliasing for higher
wave numbers on a fixed grid). This effect becomes less pronounced as the grid is refined, or if higher-
order spatial stencils are used, e.g. fourth-order explicit differentiation ðf ð/Þ ¼ sin /

/ ð1þ 1
6

sin2 /Þ [17,22])
or implicit differentiation ðf ð/Þ ¼ sin /

/
12

11þcos 2/, [7,23]), see also [13] for a collection of schemes and
references.

3. CN and ADI schemes

We are interested in comparing (the stability properties of) the CN and ADI schemes with constant step
size Dt applied to the ordinary differential system (3). For simplicity we shall make the following
substitutions:
û! u;
1

2
DtA! A;

1

2
DtB! B ð8aÞ
and let
1

2
Dt~ka ¼ W a ð8bÞ
(compare [2,25,26]). For f defined by (6) the inequality
jW aj 6
Dt
Da

ð9Þ
yields
W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2

x þ W 2
y þ W 2

x

q
6 Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðDxÞ2
þ 1

ðDyÞ2
þ 1

ðDzÞ2

s
� CFL ð10Þ
for any Da (a = x,y,z). Near equality in (9) occurs for wave numbers jkaj � p
Da, corresponding to modes which

are not well resolved on the finite difference grid.
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Upon the substitutions (8) the matrices A and B become
respectively.
The CN scheme defines an approximation un+1 of u at time (n + 1)Dt as
ðI � A� BÞunþ1 ¼ ðI þ Aþ BÞun: ð11Þ

This iteration requires the solution of a 6 · 6 linear system with matrix I � A � B. Adding ABun+1 on each
side of (11) and factoring yields
ðI � AÞðI � BÞunþ1 ¼ ðI þ AÞðI þ BÞun þ ABðunþ1 � unÞ: ð12Þ

The ADI scheme defines un + 1 as
ðI � AÞðI � BÞunþ1 ¼ ðI þ AÞðI þ BÞun ð13Þ

which can be obtained by dropping the last term in (12) [8]. The ADI scheme is normally implemented in split
form
ðI � AÞunþ1
2 ¼ ðI þ BÞun; ð14aÞ

ðI � BÞunþ1 ¼ ðI þ AÞunþ1
2 ð14bÞ
(note that I � A and I + A commute), which requires the solution of two 6 · 6 systems with matrices I � A

sand I � B, both of which can both be permuted into block diagonal matrices with 2 · 2 diagonal blocks,
and can therefore be easily inverted [9,12,26].

3.1. Stability/dispersion

The iteration matrices
T CN ¼ ðI � A� BÞ�1ðI þ Aþ BÞ

of (11) and
T ADI ¼ ðI � BÞ�1ðI � AÞ�1ðI þ AÞðI þ BÞ ð15Þ

of (13) both have double eigenvalues
k ¼ 1; e2jh; e�2jh ð16Þ

with
tan hCN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2

x þ W 2
y þ W 2

z

q
¼ W ð17Þ
for CN and
tan hADI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2

x þ W 2
y þ W 2

z þ W 2
xW 2

y þ W 2
y W 2

z þ W 2
z W 2

x

1þ W 2
xW 2

y W 2
z

vuut ð18Þ
for ADI (compare [3,25]). Using the trigonometric identity cos2h = (1 + tan2h)�1 one obtains, for a 2D
TEz/TMz wave (Wz = 0), the relation
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cos hADI ¼ cos hCN

ffiffiffiffiffiffiffiffiffiffiffi
1� q

p
ð19Þ
with
q ¼
W 2

xW 2
y

ð1þ W 2
xÞð1þ W 2

yÞ
: ð20Þ
In comparison, the exact flow of the semi-discretized problem (3) has iteration matrix
T exact ¼ e2ðAþBÞ ð21Þ

with eigenvalues of the form (16), where
hexact ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2

x þ W 2
y þ W 2

z

q
¼ W : ð22Þ
For reference, the standard Yee scheme [21]
ðI � UÞunþ1 ¼ ðI þ LÞun; ð23Þ

where
corresponds to a Gauss–Seidel waveform relaxation with iteration matrix
T Yee ¼ ðI � UÞ�1ðI þ LÞ:
The eigenvalues of TYee are of the form (16) with
sin hYee ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2

x þ W 2
y þ W 2

z

q
¼ W ð24Þ
provided W 6 1, which, in view of (10), is guaranteed for CFL 6 1.
The fact that jkADIj = 1 uniformly for all (Wx,Wy,Wz) (i.e., all (kx,ky,kz)) is not sufficient in itself to guar-

antee unconditional stability because the Von Neumann criterion does not apply to multiple eigenvalues (a
counter-example can be found in [11]). Although one can argue that the double eigenvalues of the ADI iter-
ation matrix are in fact associated to independent TE and TM modes, unconditional stability of the ADI
scheme is best shown by interpreting TADI as a composition of two unitary transformations [3], or via an
energy estimate in the spirit of [4], see also [5] and Appendix A.

Fig. 1, left, displays the dispersion relation between h and hexact for the CN and ADI schemes, using a dis-
crete set of (Wx,Wy,Wz) triplets. The relation between hCN and hexact is one-to-one, namely, tanhCN = hexact.
On the other hand, the relation between hADI and hexact is not one-to-one, but depends on the direction of the
wave. This situation corresponds to the case Da! 0 associated to the semi-discretized problem ðka ¼ ~kaÞ.

To visualize the effect of spatial discretization we replace hexact in (22) by its limit
lim
Da!0

hexact ¼
Dt
2

k; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y þ k2

z

q
:

The new dispersion relation depends on the spatial sampling rates
na ¼
2p
jkajDa

; ða ¼ x; y; zÞ; ð25Þ



Fig. 1. Dispersion relations h vs. h exact for the CN, ADI and Yee schemes for (a) Da! 0 (f(/) = 1) and (b) finite Da (f(/) as in (6)). A set
of 3602 triplets (kx,ky,kz) = k(cosucosw, cosusinw, sinu) uniformly distributed in the square [u,w] = [0,p/2]2 and 3602 sampling rates
ðnx ¼ ny ¼ nz;mÞ ¼ mð1=

ffiffiffi
3
p

; 1Þ with m uniformly distributed in the interval [2] was used.
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the time sampling rate m ¼ 2p
xDt (x = k in scaled variables, compared to the usual relation x = kc in unscaled

variables), as well as on the particular spatial discretization used (i.e., f as in (6)). The range 0 6 hexact 6
p
2

cor-
responds to the Nyquist limit na P 2. Fig. 1, right, illustrates the dispersion relation for a range 2 6 mx =
my = mz = m 6 40 of random spatial samplings for a staggered grid with f given by (6), in the case
n ¼ m

ffiffiffi
3
p

associated to the CFL stability limit of the Yee scheme [21]. The dispersion relation for the Yee
scheme is included for comparison. For the semi-discretized problem (in time) the Yee curve is above the diag-
onal line h = hexact (typical of an explicit, conditionally stable, scheme), while the CN and ADI ‘‘curves’’ are
below (typical of implicit, unconditionally stable schemes). Because of (7) spatial discretization lowers these
curves. In particular, exact dispersion properties can be recovered in the Yee case for a special choice of Dt

[16]. Although this cannot be done in the CN or ADI cases, upper bounds on Dt can be obtained to reach
a specific dispersion accuracy (e.g. see [14,15,24] in the ADI case).

3.2. Accuracy (small W)

The accuracy of the different numerical schemes is evaluated by determining the leading ðOðDt3ÞÞ trun-
cation error in the approximation of the exact semigroup e2(A + B) by the iteration matrix of the schemes.
We obtain
e2ðAþBÞ � T CN ¼ �
2

3
ðAþ BÞ3 þ OðW 4Þ ð26Þ
and
e2ðAþBÞ � T ADI ¼ �
2

3
ðAþ BÞ3 þ 2ABðAþ BÞ þ OðW 4Þ ð27Þ
for the CN and ADI schemes (compare Eq. (22) in [8]). The extra term in (27) compared to (26) is often
blamed for the lower accuracy observed in certain ADI experiments with highly refined grids (i.e., na� CFL),
as in the experiments conducted in [19]. With (6) the relations (8b), (7), (10), (25) then yield
jW aj ¼
1

2
Dt ~ka

�� �� 6 1

2
Dt kaj j 6

1

2
Da kaj jCFL ¼ p

CFL

na
� 1; ð28Þ
which justifies the expansions (26) and (27). A detailed computation for a two-dimensional TEz wave yields
(with A and B given by (B.1), Wz = 0)
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ECN � �
2

3
ðAþ BÞ3 ¼ 2

3
j

0 0 �W yW 2

0 0 W xW 2

�W yW 2 W xW 2 0

2
64

3
75
while
EADI � �
2

3
ðAþ BÞ3 þ 2ABðAþ BÞ ¼ 2

3
j

0 0 3W 2
xW y � W yW 2

0 0 W xW 2

�W yW 2 W xW 2 0

2
64

3
75 :
The Euclidean norms of ECN and EADI satisfy kECNk ¼ 2
3
W 3
6 kEADIk for all wave directions, with a strict

inequality whenever jW xjP jW y j
ffiffiffi
2
p

.

4. Iterated ADI schemes

In an effort to reduce anisotropy effects in dispersion properties and accuracy degradation in large gradient
locations in ADI calculations, Wang et al. recently considered the iteration
ðI � AÞðI � BÞunþ1
kþ1 ¼ ðI þ AÞðI þ BÞun þ ABðunþ1

k � unÞ ð29Þ

for solving (12) [19]. If unþ1

0 ¼ un the first iterate unþ1
1 is simply the approximation obtained with the ADI

scheme (13).
Numerical tests conducted in [8] on a 2D TEz wave suggest that more accuracy can be gained, in particular

around grid locations close to field singularities or sharp gradients, by using a small number of iterations (29).
However, no theoretical justification is given. In this section we show that the fixed point iteration (29) indeed
converges as k increases (to the CN approximation) and investigate the stability/accuracy properties of the
iterated schemes resulting from a fixed number k of fixed-point iterations.

4.1. Split forms

Wang et al. use the split form
ðI � AÞunþ1
2

kþ1 ¼ ðI þ BÞun þ 1

2
ABðunþ1

k � unÞ; ð30aÞ

ðI � BÞunþ1
kþ1 ¼ ðI þ AÞunþ1

2
kþ1 þ

1

2
ABðunþ1

k � unÞ ð30bÞ
of (29), which enables them the same efficiency as ADI [19]. They also suggest replacing unþ1
k in (30b) by a

linear prediction but provide no specific detail.
The form (30) offers no specific advantage over the simpler split form
ðI � AÞu�kþ1 ¼ ðI þ AÞðI þ BÞun þ ABðunþ1
k � unÞ;

ðI � BÞunþ1
kþ1 ¼ u�kþ1;
other than the interpretation of u
nþ1

2
kþ1 as an approximate solution at the intermediate time ðnþ 1

2
ÞDt. On the

other hand, the alternate split form
ðI � AÞunþ1
2

kþ1 ¼ un þ B
unþ1

k þ un

2
; ð31aÞ

ðI � BÞ u
nþ1
kþ1 þ un

2
¼ un þ Au

nþ1
2

kþ1; ð31bÞ
of (29) involves only multiplications by A or B (first-order derivatives) rather than AB (second-order deriva-
tives) and can be expected to be less prone to round-off errors in the numerical differentiation process. As in
the ADI case u

nþ1
2

kþ1 and unþ1
kþ1 can be efficiently computed via tridiagonal solves whose right-hand sides require

second-order differentiation, rather than third-order if (30) is used, see Appendix C. Note that u
nþ1

2
kþ1 defined in

(30a) and (31a) are distinct, although both are consistent approximations of u at ðnþ 1
2
ÞDt.
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4.2. Convergence of the fixed-point iteration (29)

The fixed point iteration (29) converges if the eigenvalues l of the iteration matrix
Fig. 2.
in the
SFP ¼ ðI � BÞ�1ðI � AÞ�1AB ¼ ðI � BÞ�1 ðI � AÞ�1ABðI � BÞ�1
h i

ðI � BÞ

¼ ðI � BÞ�1 ðI � AÞ�1AðI � BÞ�1
h i

ðI � BÞ ¼ ðI � BÞ�1
CðAÞCðBÞðI � BÞ; ð32Þ
where
CðAÞ ¼ ðI � AÞ�1A;
satisfy jlj < 1. Fig. 2 (left) numerically confirms that this is indeed true independently of the wave number
(kx,ky,kz). Note that the version of the fixed-point iteration based on linear prediction does not converge.

We now justify why the fixed point iteration (29) does converge. Since SFP is similar to CðAÞCðBÞ it suffices
to show that this is true for the eigenvalues l of CðAÞCðBÞ. The matrix A is skew-Hermitian, so that its eigen-
values jw are located on the imaginary axis. The eigenvalues CðjwÞ of CðAÞ then satisfy
jCðjxÞj ¼ jx
1� jx

����
���� ¼ jxjffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p < 1:
A similar bound holds for the skew-Hermitian matrix B. However, this is not sufficient to prove the result,
since the eigenvalues of AB cannot be simply obtained from those of A and B because A and B do not com-
mute. Instead, we show that the Euclidean norms kCðAÞk, kCðBÞk < 1. The matrix
CðAÞCðAÞ� ¼ ðI � AÞ�1AA�½ðI � AÞ�1	� ¼ ðI � AÞ�1AA�ðI � A�Þ�1 ¼ �ðI � AÞ�1A2ðI þ AÞ�1

¼ �ðI � A2Þ�1A2 ¼ �CðA2Þ
has eigenvalues
0 6 �CððjxÞ2Þ ¼ x2

1þ x2
< 1;
so that
kCðAÞk2 ¼ max
k

kðCðAÞCðAÞ�Þ ¼ max
x

x2

1þ x2
< 1: ð33Þ
Eigenvalues of the iteration matrix SFP (32) of the fixed-point iteration (29) for 503 triplets (Wx,Wy,Wz) logarithmically distributed
cube [10�1, 101]3.
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Similarly, iC(B)i < 1. Consequently,
Fig. 3.
uniform
jlj 6 kCðAÞCðBÞk 6 kCðAÞk kCðBÞk 6 1:
The bound (33) suggests a fast convergence of the FP iteration for small x i.e., small W, which occurs in highly
refined grids and relatively large CFL numbers (see (28)).

4.3. Stability/dispersion

4.3.1. 2D wave

We first consider a 2D TEz/TMz wave (kz = 0,Wz = 0). Remarkably, TADI(k) possesses eigenvalues of the
form (16) (three associated to a TEz mode, and the same three associated to a TMz mode) for any k, with
an angle h = hADI(k) which can be expressed via the dispersion relation
cos hADIðkÞ ¼ cos hCN

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qk

p
ð34Þ
with q given by (20) (QADI(I) = hADI), see Appendix B for a detailed proof. In particular
hCN 6 
 
 
 6 hADIð2Þ 6 hADI 6 hexact
(with equality in all but the last inequality if Wx = 0 or Wy = 0). Fig. 3 displays the relative phase accuracy
hADI(k)/hexact in terms of the wave direction. The dispersion accuracy of the ADI(k) scheme monotonically de-
creases with k but becomes more isotropic. The convergence is faster at higher spatial sampling rates/CFL
ratios.

In the 2D case the fixed-point iteration (29) thus defines unconditionally stable schemes whose dispersion
properties monotonically approach those of the CN scheme.

4.3.2. 3D wave

For the general case of a 3D wave, the spectral radius of the iteration matrices TADI(k) is determined numer-
ically for a range of random wave numbers. The result is plotted against W in Fig. 4 (W . CFL for poorly
resolved wave numbers, see (28)). Although both ADI (the starting scheme) and CN (the limiting scheme)
are unconditionally stable, all intermediate iterated schemes appear to be conditionally stable only. First
the ADI(2) scheme exhibits worse stability properties than the Yee scheme itself (unstable for values
W < 1). As k increases the stability limit seems to slowly increase too. Note however how a number of modes
develop instabilities at lower values of W as k further increases. It turns out such a layer of unstable modes
also exists at smaller values of k, but is so thin that it is not apparent in Fig. 4. As a result all practical iterated
schemes (k < 10) are unstable at CFL � 2, and lead to a blow-up in the numerical solution.
0  π/4 π/2
0.9955

0.996

0.9965

0.997

0.9975

0  π/4 π/2
0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83
(a) (b)

Relative phase velocity hADI(k)/hexact with increasing k for a 2D wave (kx,ky) = k(cos(u), sin(u)) vs. u in the case of a highly refined
spatial grid (nx = ny = 100 cells per wavelength) and (a) CFL = 5, (b) CFL = 50 (Dz =1).
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The time it takes to observe a macroscopic effect of the blow-up can be estimated for a constant Dt as fol-
lows. If q = 1 + e denotes the spectral radius of the iteration matrix TADI(k), and the numerical solution is of
order Oð1Þ before blow-up, then the instability becomes visible after a time tblow-up = nDt such that
ð1þ eÞn ¼ Oð1Þ. This requires e � C

n for some constant C (because limn!1ð1þ C
n Þ

n ¼ eC ¼ Oð1Þ), i.e.,
Fig. 4.
triplets
tblow-up �
CDt
e
: ð35Þ
Table 1 lists the blow-up time estimates vs. 1 < k 6 10 at CFL = 2 with Dt � 0.058 and choosing C = 20. The
actual blow-up time obtained from the numerical simulations in Section 5 is included for comparison.
Spectral radius of the iteration matrix TADI(k) from (36) of iterated schemes for k = 1, . . . ,10 as a function of W using 503 random
(Wx,Wy,Wz) logarithmically distributed in the cube [10�1, 101]3.



Fig. 4 (continued)
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Because the spectral radius of TADI(k) is sampled on a finite number of random wave numbers, the esti-
mated values of tblow-up only yield an upper bound on the actual values. They also become increasingly inac-
curate as e gets smaller, but still provide a reasonable guideline to observe the instability at the macroscopic
level.

4.4. Accuracy

The iteration matrix of the scheme obtained after k fixed point iterations (29) is obtained recursively from
T ADIðkþ1Þ ¼ T ADI þ ðI � BÞ�1ðI � AÞ�1ABðT ADIk � IÞ ð36Þ
with TADI(k+1) = I(TADI(1) = TADI).



Table 1
Maximal spectral radius of TADI(k) over 502 random triplets (Wx,Wy,Wz) with W 2

x þW 2
y þW 2

z ¼ 4 logarithmically distributed in the
square [10�1, 101]2 (W = 2 . CFL), estimated and actual time to blow-up (using (35) with C . 20 and simulations from Section 5)

k Max spectral radius 1 + e Estimated (tblow-up) Actual (tblow-up)

1 1.000000 1 1
2 1.399842 3 3
3 1.305731 4 4
4 1.037640 31 27
5 1.000063 18,358 2080
6 1.002654 435 171
7 1.013163 88 54
8 1.018689 62 61
9 1.003921 294 327

10 1.000013 84,051 14,200
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The first iteration of the iterated ADI scheme (36) yields
Fig. 5.
x, y, z

directi
e2ðAþBÞ � T ADIð2Þ ¼ e2ðAþBÞ � T ADI � ðI � BÞ�1ðI � AÞ�1ABðT ADI � IÞ

¼ � 2

3
ðAþ BÞ3 þ 2ABðAþ BÞ � ABð2ðAþ BÞÞ þ 0ðW 3Þ ¼ � 2

3
ðAþ BÞ3 þ 0ðW 3Þ; ð37Þ
i.e., a leading error term similar to that of the CN scheme. Subsequent iterations do not modify this leading
term.

5. Numerical experiments

We illustrate the behavior of the ADI(k) schemes when applied to a unit box [0,1]3 with PEC boundary
conditions. The spatial discretization used corresponds to the classical centered and staggered scheme of
Yee ([21], see Fig. 5) with mesh size Dx ¼ Dy ¼ Dz ¼ 1

20
. The boundary condition for the Ez component at

y = 0 is a plane wave
Ez ¼ sin 2pðt þ xþ rzÞ ð38Þ

with frequency 1. All other electric boundary as well as initial conditions are set to zero. The iterated schemes
are implemented using the update equations listed in Appendix C. The Ez electric field component is then ob-
served at the center of the box.
Staggered grid finite differentiation as in the Yee scheme [21]. Electric field values Ex, Ey, Ez are defined at the middle of edges in the
directions, respectively, while magnetic field values Hx, Hy, Hz are defined at the center of faces in the planes orthogonal to the x, y, z

ons, respectively.
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Fig. 6. (a) Time series for Ez(.5, .5, .5) obtained with the Yee, ADI(1)=ADI and ADI(5) schemes at CFL = 1 with r = 1 in the boundary
condition (38). (b) Corresponding power spectrum density (based on time series for 0 6 t 6 200). The ADI(5) spectrum is closer to the Yee
spectrum than the ADI(l) is for larger frequencies.
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The (Matlab) code for ADI(k) is validated against the Yee solution at CFL = 1 for k = 1 (ADI) and k = 5
by plotting the time series of Ez(.5, .5, .5) as well as the corresponding power spectrum densities obtained in the
time interval 0 6 t 6 200, see Fig. 6. Note the dominant mode at 1 Hz, as well as the presence of harmonics.
The lower modes match perfectly.

5.1. 3D experiments: r = 1

Nonzero values of r in the boundary condition (38) introduce a z-dependence and a coupling between TE
and TM modes. Because a variety of modes coupling TE and TM components are excited, the schemes
ADI(k), k > 1, are expected to be unstable according to the stability analysis of Section 4, see Fig. 4.

Fig. 7 displays the time series at CFL = 2 for increasing values of k. The ADI(2), ADI(3) and ADI(4) solu-
tions rapidly become unstable, in a time frame consistent with the estimates of Table 1. The ADI(1) = ADI
solution remains stable, as expected.

Running the ADI(5) scheme a while longer reveals instabilities which become apparent around tblow-up =
2080 s, while instabilities in ADI(k), k = 6,7,8,9, develop in a much shorter time frame. These results are
in agreement with the behavior expected from the numerical stability analysis conducted in Section 4 on single
Fourier modes.

5.2. 2D experiments: r = 0

Setting r = 0 in the boundary condition (38) results into a decoupling of TE and TM modes similar to the
one occurring in a two-dimensional implementation of the problem. Fig. 8 displays, as in Fig. 7, the time series
of Ez(.5, .5, .5) for the schemes ADI(k), k = 1,2,3. The iterations ADI(2) and ADI(3) are now stable, which
supports the conclusions of Section 4.3. Moreover, a difference can be observed between the time series for
ADI and ADI(2). On the other hand no noticeable difference between the time series for ADI(2) and
ADI(3) exist, in agreement with the accuracy estimate of Section 4.4. Tests with larger values of k show no
change in the time series.
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Fig. 7. Time series for Ex(.5, .5, .5) obtained with ADI(k) for k = 1,2,3,4,5, using r = 1 in (38) (CFL = 2). In (e) the series blows up at
time t � 2080, see Table 1.
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Fig. 8. Time series for Ex(.5, .5, .5) obtained with ADI(k) for k = 1,2,3, using r = 0 in (38) (CFL = 2). In this 2D simulation, no blow-up
occurs, compare with a 3D simulation, Fig. 7.
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6. Conclusions

The iterated ADI(2) scheme obtained with a single step of fixed-point iteration appears to be a good sub-
stitute for the CN scheme in 2D simulations: both schemes possess similar unconditional stability and accu-
racy properties when applied to non-dissipative Maxwell curl system (TE or TM modes). However, the
coupling of TE and TM modes in three dimensions destabilizes the iterated schemes ADI(k) for k > 1. These
schemes exhibit only marginal improvements in stability properties (and in a non monotonic fashion as k
increases) and at a cost which rapidly becomes prohibitive. Unresolved (high frequency) modes in the solution
are typically responsible for igniting the instabilities.

Overall, there seems to be little incentive in using the ADI(k) schemes analyzed in this work as a substitute
for the CN scheme in problems with coupled TE/TM modes, the usual case in full 3D simulations. If one is
interested in low band analysis of a solution (e.g. in low frequency bioelectromagnetics) using a highly refined
grid (a situation where ADI is more efficient than the Yee scheme), it might be possible to recover useful power
spectral information before blow-up occurs, as in Fig. 6. A low passband filtering of the numerical solution at
each time step might improve the stability properties of the ADI(k) scheme in long term calculations.

The difference in stability properties between the 2D and 3D cases does not seem to be specific to the iter-
ated schemes discussed here. A similar scenario applies to a symmetric version of ADI proposed in [20] as well
as schemes with corrections based on linear extrapolation proposed in [1]. The construction of an ADI-like
scheme with better accuracy/dispersion properties (which deal with the low W range) than the standard
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ADI scheme, and unconditional stability (which addresses the behavior of the method for large W) when
applied to problems with coupled TE/TM modes is currently under way.
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Appendix A. Unconditional stability of ADI

A.1. Via a polar decomposition [3]

Write
T ADI ¼ ðI � BÞ�1CACBðI � BÞ;

where
CA ¼ ðI � AÞ�1ðI þ AÞ; CB ¼ ðI � BÞ�1ðI þ BÞ

are the Cayley transforms of A and B, respectively. Since A and B are skew-Hermitian, the matrices CA and CB

are unitary. Using i(I � B)�1i 6 1 we obtain
kT n
ADIk ¼ kðI � BÞ�1ðCACBÞnðI � BÞk 6 kðI � BÞ�1kkI � Bk 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þmaxðW 2

x ;W
2
y ;W

2
z Þ

q

independently of n (but not independently of the wave number).

A.2. Via an energy estimate [4,5]

Since A and B are skew-hermitian w.r.t. the Euclidean inner product (u,v) = v*u we have Rðu;AuÞ ¼
Rðu;BuÞ ¼ 0 for all u. The energy functional
EðuÞ ¼ kuk2 þ kBuk2 ðA:1Þ

then satisfies
Eðunþ1Þ ¼ kunþ1k2 þ kBunþ1k2 ¼ kunþ1 � Bunþ1k2 þ 2Rðunþ1;Bunþ1Þ ¼ kðI � BÞunþ1k2 ¼ kðI þ AÞunþ1
2k2

¼ kunþ1
2 � Aunþ1

2k2 þ 4Rðunþ1
2;Aunþ1

2Þ ¼ kðI � AÞunþ1
2k2 ¼ kðI þ BÞunk2

¼ kunk2 þ kBunk2 þ 2Rðun;BunÞ ¼ kunk2 þ kBunk2 ¼ EðunÞ:
Note that the energy (A.1) depends on B i.e., the wave number. Higher wave numbers yield a larger, but con-
stant, energy level.

A.3. Comments

The skew-Hermitian property of A and B plays a fundamental role in the above stability proofs. This prop-
erty holds for the staggered grid second-order finite difference scheme of Yee [21], and selected higher-order
spatial difference schemes [17,2]. The energy estimate of Appendix A.2 also extends directly to lossy media,
where Rðu;AuÞ;Rðu;BuÞ 6 0.
Appendix B. Proof of (16) and (34) for TADI(k)

When kz = 0(Wz = 0) the matrices A and B can be simultaneously partitioned into two 3 · 3 block matrices
corresponding to one TEz wave propagation problem and one TMz wave propagation problem. For simplic-
ity, we only consider here the TEz case and rewrite
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A ¼
0 0 �jW y

0 0 0

�jW y 0 0

2
64

3
75; B ¼

0 0 0

0 0 jW x

0 jW x 0

2
64

3
75: ðB:1Þ
W.l.o.g. we assume WxWy 6¼ 0 (if WxWy = 0 then AB = 0 and TADI(k) = TCN for all k > 0). We obtain
SFP ¼ ðI � BÞ�1ðI � AÞ�1AB ¼ qP
with q given by (20) and
P ¼
0 ð1þ W 2

xÞ=W xSW y 0

0 1 0

0 �j=W x 0

2
64

3
75:
Note that 0 < q < 1 and P2 = P (projection matrix). In particular I � qP is nonsingular. By induction the iter-
ation matrix TADI(k) obtained from (36) satisfies
T ADIðkÞ � I ¼ T ADI � I þ qP ðT ADIðk�1Þ � IÞ ¼ T ADI � I þ qP ðT ADI � I þ qP ðT ADIðk�2Þ � IÞÞ ¼ 
 
 


¼ ðI þ qP þ 
 
 
 þ ðqP Þk�1ÞðT ADI � IÞ ¼ ðI � qkP ÞðI � qP Þ�1ðT ADI � IÞ:
Letting k!1 yields
T CN � I ¼ ðI � qP Þ�1ðT ADI � IÞ
so that
T ADIðkÞ � I ¼ ðI � qkPÞðT CN � IÞ:
Using the spectral decomposition A + B = QKQT with
K ¼
0

jW

�jW

2
64

3
75; Q ¼ 1

w
ffiffiffi
2
p

W x

ffiffiffi
2
p

�W y W y

W y

ffiffiffi
2
p

W x �W x

0 W W

2
64

3
75;
where W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2

x þ W 2
y

q
(note QTQ = I) we obtain
T CN ¼ QKCNQT; KCN ¼
1

n
�n

2
64

3
75; n ¼ 1þ jW

1� jW
:

Consequently,
QTT ADIðkÞQ ¼ QTT CNQ� qkQTP ðT CN � IÞQ ¼ KCN � qkQTPQðKCN � IÞ

¼
1 n
�n

� �
� qk

2W 2

H H H

H �l l

H �l ��l

2
64

3
75 0

n� 1 �n� 1

� �
¼

1 H H

0 nð1þ j qk

wÞ j qk

w

0 �j qk

w
�nð1� j qk

wÞ

2
64

3
75
with l = 1 + jW (stars indicate coefficients which are not of interest). The eigenvalues of TADI(k) thus are k = 1
and the roots of the characteristic equation
k2 � 2R n 1þ j
qk

w

� �� �
kþ 1 ¼ 0:
Since
�1 < R n 1þ j
qk

w

� �� �
¼ 1� 2ðqk þ W 2Þ

1þ W 2
< 1
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the two roots of the quadratic equation are complex conjugate, and have modulus one (their product is 1).
This shows that the eigenvalues of TADI(k) are of the form (16) with
cos2 hADIðkÞ ¼
1

2
1þ cosð2hADIðkÞÞ
� 	

¼ 1

2
1þR n 1þ j

qk

k

� �� �� �
¼ 1� qk

1þ W 2
¼ ð1� qkÞ cos2 hCN:
Appendix C. Practical implementation of (31)

In the following (a,b,c) = (x,y,z), (y, z,x), (z,x,y).

C.1. Update equations for (31a)

� �2
 !

n nþ1 � �2 n nþ1
I � Dt
2

ob;b E
nþ1

2
a;kþ1 ¼ En

a þ
Dt
2

obHn
c �

Dt
2

oc

Hb þ Hb;k

2
� Dt

2
oa;b

Eb þ Eb;k

2
;

H
nþ1

2
c;kþ1 ¼ Hn

c þ
Dt
2

obE
nþ1

2
a;kþ1 �

D
2

oa

En
b þ Enþ1

b;k

2
:

C.2. Update equations for (31b)

� � ! � �

I � Dt

2

2

oc;c

Enþ1
a;kþ1

2
¼ En

a �
Dt
2

ocH n
b þ

Dt
2

obH
nþ1

2
c;kþ1 �

Dt
2

2

oa;cE
nþ1

2
c;kþ1;

Hnþ1
b;kþ1 ¼ Hn

b � Dtoc

Enþ1
a;kþ1 þ En

a

2
þ DtoaE

nþ1
2

c;kþ1:
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